А вот вероятность самосоздания живых существ стремится к нулю. Вот только некоторые факты:
"В целом, орган зрения состоит как минимум из 40 элементов, и если хоть один из них не функционирует или имеет существенный дефект, человек теряет зрение полностью или частично. Следует отметить, что сам Чарльз Дарвин уже после опубликования своего знаменитого труда об эволюции, задумавшись над строением глаза, написал: «Мысли о глазе охладили меня к этой теории»1.
Пол Фальковски "Двигатели жизни: как бактерии сделали наш мир обитаемым":
Та же схема была обнаружена и в отношении эволюции сенсорных систем. Многие прокариотические микроорганизмы развили у себя хемосенсорную систему, являющуюся аналогом органов вкуса и обоняния у животных. Зрение – один из классических примеров того, какие трудности пришлось преодолеть, чтобы использовать унаследованные из микромира системы для более сложных организмов. На протяжении многих лет эволюция органов зрения считалась настолько сложной, что глаза могли сформироваться не иначе как под руководством божественного провидения. По всей видимости, Дарвин тоже занимался проблемой эволюции глаз, но его размышлениям по этому вопросу препятствовал недостаток информации. В первом издании "Происхождения видов" Дарвин писал:
"Предположение о том, что глаз со всеми его несравненными приспособлениями для фокусировки на различные расстояния, для пропускания различного количества света, для корректировки сферической и цветовой аберрации мог быть сформирован в результате естественного отбора, признаюсь откровенно, кажется в высочайшей степени абсурдным. Тем не менее здравый смысл говорит мне, что если будет доказано, что существуют многочисленные градации от совершенного и сложного глаза до глаза весьма несовершенного и простого, притом что каждая градация окажется полезной для ее обладателя (а это, несомненно, так и есть); если, далее, глаз понемногу изменяет свое строение и эти изменения наследуются (что также несомненно); если любая вариация или модификация этого органа оказывается полезной для животного в изменяющихся условиях его жизни – тогда препятствие, мешающее нам поверить, что совершенный и сложно построенный глаз мог сформироваться путем естественного отбора, хотя и непреодолимое для нашего воображения, едва ли можно считать существующим в действительности."
Дарвин не мог знать, что у микроорганизмов имеется несколько типов органов, чувствительных к свету. В глазах животных присутствует пигмент
ретиналь (получаемый из витамина А), связанный с белком
опсином. Опсины составляют весьма обширное семейство белков, которые все имеют одинаковое базовое строение – семь спиралей, охватывающих клеточную мембрану. У животных белок, содержащий ретиналь, является светочувствительным датчиком, но очень похожие пигменты, связанные с другими белками-опсинами, найдены также у многих микроорганизмов. Эти пигменты,
родопсины, чрезвычайно распространены во всем Мировом океане. Произошли ли эти два пигментно-белковых комплекса от одного общего предка? По всей видимости, ответ отрицательный. Опсины, судя по всему, эволюционировали независимо и по меньшей мере в два отдельных временных периода. У прокариотов и некоторых одноклеточных эукариотов они часто служат для подкачки протонов, используемых для генерации электрического градиента по разные стороны клеточной мембраны. Эти пигментно-белковые комплексы также имеют семь трансмембранных спиралей, но их аминокислотные последовательности совершенно не похожи на опсины в глазах животных. У микроорганизмов этот пигментно-белковый комплекс используется для выработки энергии. При помощи родопсинов микроорганизмы продвигают протоны через свои клеточные мембраны. Протоны вытекают через вращающийся фактор сопряжения, позволяя клетке синтезировать АТФ при наличии света. Однако те же самые пигментно-белковые комплексы могут также действовать как светочувствительные датчики. У многих одноклеточных эукариотов родопсины дают клетке возможность плыть в направлении света определенных цветов. Этот пигмент большей частью сохранился и был вновь использован в совокупности с другими белками, обладающими примечательно сходным строением, у широкого круга одноклеточных эукариотов, а позднее и у животных, где он был связан с еще одним белком.
Стигмы, или глазки, найденные у нескольких типов одноклеточных водорослей, представляют собой примитивные оптические датчики, содержащие родопсины. Гены этих опсинов, по-видимому, передавались горизонтальным путем через несколько микробиотических линий. Опсины найдены также у кораллов, где эти пигментно-белковые комплексы ощущают свет, и это служит животному знаком для начала размножения. В процессе эволюции настоящего глаза, способного не только чувствовать свет, но также фокусироваться на изображении, родопсины подобного типа образуют прослойки внутри мембран. Линза, состоящая из коллагена, исполняет роль оптического "объектива", соединенного с сенсорными системами, в свою очередь связанными с мозгом – сложным органом, способным регистрировать изображения и сравнивать их с предыдущими записями. При эмбриологическом развитии позвоночных глаза формируются как непосредственное продолжение мозга.
О "совершенстве" человеческого органа зрения и его "несократимой" сложности хорошо написано в статье на сайте evolbiol.ru
Эволюция глаза. Еще один пример несовершенства в строении организмов — сетчатка позвоночных и слепое пятно. У позвоночных нервы и сосуды сетчатки расположены поверх светочувствительных клеток, а значит — свет должен пройти через несколько слоев клеток прежде чем попасть на палочки и колбочки. Слепое пятно — это отверстие в сетчатке, через которое нервы идут от сетчатки к мозгу. Для решения многочисленных проблем, вызванных таким устройством сетчатки, у позвоночных есть ряд адаптаций, в частности у нервов, идущих поверх сетчатки, отсутствует миелиновая оболочка, что повышает их прозрачность, но снижает скорость передачи сигнала (еще один пример "подгонок" и "подстроек", характерных для лишенного дара предвидения эволюционного процесса). Схожие по строению глаза головоногих лишены этого недостатка. Это наглядно показывает, что и у позвоночных могли бы быть глаза без слепых пятен.
Великий немецкий ученый XIX века Герман фон Гельмгольц сказал о человеческом глазе:
"Если бы какой-нибудь оптик попытался продать мне инструмент со всеми этими дефектами, я бы счел себя в полном праве в самых сильных выражениях обвинить его в разгильдяйстве, и вернул бы ему его инструмент".
Упрощенная схема расположения нейронов сетчатки. Сетчатка состоит из нескольких слоев нейронов. Свет падает слева и проходит через все слои, достигая фоторецепторов (правый слой). От фоторецепторов сигнал передается биполярным клеткам и горизонтальным клеткам (средний слой, обозначен желтым цветом). Затем сигнал передается амакриновым и ганглионарным клеткам (левый слой). Эти нейроны генерируют потенциалы действия, передающиеся по зрительному нерву в мозг.
Причины, по которым глаз у позвоночных устроен так нелепо ("вывернут наизнанку"), описаны, в частности, в книге Нила Шубина "Your inner fish". Они уходят корнями в самые ранние этапы эволюции хордовых. Далекие предки позвоночных животных, похожие на ланцетника, имели фоторецепторы, обращенные во внутреннюю полость спинной нервной трубки. Нервная трубка, в свою очередь, сформировалась путем впячивания нервной пластинки, представлявшей собой специализированный участок кожных покровов (эпителия). Таким образом, изначально фоторецепторы смотрели наружу, в сторону света, но при формировании спинной нервной трубки - характерной черты хордовых - они оказались обращенными во внутреннюю полость этой трубки (невроцель). Для животных, подобных ланцетнику, это не имеет особого значения, потому что они очень маленькие и совсем прозрачные. А главное, светочувствительные клетки у таких животных все равно не могли различать контуры объектов: они могли лишь отличать свет от тьмы, и четкость изображения для них не имела значения. Более сложные глаза позвоночных формировались из выпячиваний передней части нервной трубки, которая стала головным мозгом. При этом фоторецепторы так и остались обращенными вовнутрь - никакая мутация не могла бы вывернуть их наружу при таком способе формирования нервной системы, который позвоночные унаследовали от своих похожих на ланцетника предков. Разумеется, для "разумного дизайнера", начинающего проект с чистого листа, подобной проблемы просто не существовало бы.
Начало формирования нервной трубки из складки эпителия у человеческого зародыша.
Схема строения глаз современных моллюсков разной степени сложности — от простейшего светочувствительного пятна (у некоторых брюхоногих;
вверху) до глаза, сравнимого по сложности и сходного по строению с человеческим (у осьминога; внизу) — наглядно показывает несостоятельность утверждений креационистов, будто такие сложные структуры, как глаза, не могли возникнуть постепенно, а значит, были сотворены такими, каковы они есть. Иллюстрация из книги Science, Evolution, and Creationism // Washington, D.C.: The National Academies Press. (PDF 3,2 Мб можно бесплатно скачать
здесь, предварительно зарегистрировавшись).
Как видно из этой схемы, у моллюсков фоторецепторы как были изначально обращены наружу, к свету, так и остались; поэтому нервные волокна у них присоединяются к светочувствительным клеткам сзади, а не спереди, и нет никаких слепых пятен. Моллюскам в данном случае просто "повезло", что у них светочувствительные органы изначально не были связаны со впячивающимися (подобно зачатку нервной трубки хордовых) участками эпителия.
Типичный аргумент антиэволюционистов - аргумент от "несократимой сложности", который применительно к глазу звучит так: "сложный глаз (например, человеческий) не мог возникнуть путем постепенной эволюции, потому что глаз полезен только как целое - удалите какую-то часть глаза, и он станет бесполезен." Приведенная выше схема показывает, как на самом деле может идти эволюция сложного глаза. Ключевая ошибка в рассуждениях антиэволюционистов состоит в том, что на самом деле глаз полезен не только "как целое", т.е. в полностью готовом виде. Простейший глазок, состоящий из нескольких светочувствительных эпителиальных клеток, способен только отличать день от ночи, но это все же лучше, чем никакого зрения вообще. Впячивание такого глазка дает дополнительное преимущество, позволяя определять направление на источник света. Дальнейшее впяивание превращает глаз в "камеру-обскуру" и позволяет уже различать объекты; последующее добавление хрусталика улучшает фокусировку, и т.д. Каждый маленький шажок на этом долгом эволюционном пути был выгоден организмам, и поэтому поддерживался естественным отбором.
http://www.evolbiol.ru/document/1673